

JENNIFER M. GRANHOLM

GOVERNOR



October 20, 2009

- TO: Mary Fales, Macatawa Area Coordinating Council
- FROM: Dave Fongers, Hydrologic Studies Unit, Land and Water Management Division

Dave Fongers

SUBJECT: Macatawa Watershed Loading Analysis, Ottawa and Allegan Counties

As requested, the Hydrologic Studies Unit of the Land and Water Management Division has completed its loading analysis of the Macatawa watershed. Nothing in the report is an authorization to do any work within the watershed that would require a permit, or guarantees that grant proposals based on this report will be permitted or funded.

If you have any questions or comments regarding this report, please contact me at 517-373-0210.

Attachment

cc: Julia Kirkwood, WB, MDEQ Michelle Storey, WB, MDEQ Peter Vincent, WB, MDEQ Amy Peterson, WB, MDEQ Ralph Reznick, WB, MDEQ Marlio Lesmez, LWMD, MDEQ

# Macatawa Watershed Modeled Pollutant Loads



Dave Fongers Hydrologic Studies Unit Land and Water Management Division Michigan Department of Environmental Quality August 31, 2009



www.michigan.gov/deqnps

## **Table of Contents**

| 2 |
|---|
| 2 |
| 4 |
| 4 |
| 4 |
| 4 |
| 5 |
| 6 |
| 7 |
| 7 |
| 9 |
|   |

This Nonpoint Source (NPS) Pollution Control project has been funded wholly by the United States Environmental Protection Agency (EPA) through a Part 319 grant to the Michigan Department of Environmental Quality. This study is in support of a NPS Macatawa watershed planning grant, 2008-0016. The contents of the document do not necessarily reflect the views and policies of the EPA, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

The cover depicts the flow from Lake Macatawa into Lake Michigan. Aerial photography courtesy of <u>www.bing.com/maps/</u>.

For comments or questions relating to this document, contact Dave Fongers at:

MDEQ, LWMD, P.O. Box 30458, Lansing, MI 48909 fongersd@michigan.gov or 517-373-0210

## Purpose

The EPA requires watershed management plans funded through Section 319 grants to quantify pollutant loads in order to focus management efforts and implementation practices where they will provide the greatest pollutant load reductions. This study of the Macatawa watershed was conducted by the Hydrologic Studies Unit (HSU) of the Michigan Department of Environmental Quality (MDEQ) to help fulfill those requirements. The modeling estimates annual runoff volumes using precipitation, land use, and soil data. Pollutant loads for each subbasin are then estimated using annual runoff and loadings by land cover as defined in the Water Quality Trading Rules, www.state.mi.us/orr/emi/admincode.asp?AdminCode=Single&Admin Num=32303001& Dpt=EQ&RngHigh. The modeling does not include local anomalies, such as gully erosion, or in-stream processes, such as channel erosion. The modeled load estimates do not replace in-stream monitoring data.

## Watershed Description

The 175-square mile Macatawa watershed includes portions of Ottawa and Allegan Counties. This study divides the watershed into 55 subbasins, Figure 1. Some areas have been identified as non-contributing, meaning that they do not have an apparent overland outlet for surface runoff. We have assumed that these areas, all within the Kelly Lake Drain subbasin and totaling 0.27 square miles, do not contribute surface runoff to Kelly Lake Drain or its tributaries. Runoff may pool within the areas, but that runoff has no natural outlet and therefore must either evaporate or infiltrate. If these areas become developed, artificial drainage may be installed, potentially increasing runoff to Kelly Lake Drain. Runoff from the non-contributing areas has not been included in the model.

For this analysis, Lake Macatawa is considered hydraulically equal to Lake Michigan. Further, we assume Lake Macatawa begins where the flood insurance study begins to show an increase in predicted flood elevations, which is 4,000 feet upstream of Butternut Drive/River Avenue. This is approximately equivalent to Windmill Island.



| -  |                                                             | 1.00 |                                                         |
|----|-------------------------------------------------------------|------|---------------------------------------------------------|
| 1  | Beaver Dam Drain to Macatawa River                          | 29   | Hunters Creek to Brower Drain                           |
| 2  | Macatawa River to Beaver Dam Drain                          | 30   | Brower Drain to Hunters Creek                           |
| 3  | Macatawa River at 72nd Avenue                               | 31   | Noordeloos Creek to Drain #52                           |
| 4  | Macatawa River at I-196 Overpass                            | 32   | Cedar Drain to Noordeloos Creek                         |
| 5  | Macatawa River to Hunderman Creek                           | 33   | Drain #4 and 43 to Noordeloos Creek                     |
| 6  | Big Creek to Hunderman Creek                                | 34   | Noordeloos Creek to Macatawa River                      |
| 7  | Hunderman Creek to Big Creek                                | 35   | Macatawa River to North Branch                          |
| 8  | Hunderman Creek to Macatawa River                           | 36   | Macatawa River to Noordeloos Creek                      |
| 9  | Macatawa River to South Branch                              | 37   | North Holland Creek to Drain #40                        |
| 10 | Unnamed tributary to Peters Drain                           | 38   | Drain #15 and 17 to Drain #40                           |
| 11 | Peters Drain                                                | 39   | Drain #40 to Macatawa River                             |
| 12 | Unnamed tributary to Peters Creek                           | 40   | Macatawa River to Windmill Island                       |
| 13 | Peters Creek to Macatawa River                              | 41   | Maplewood Intercounty Drain to Macatawa River           |
| 14 | Kleinheksel Drain to South Branch                           | 42   | Troost and Boven Dam Drains to Pine Creek/Harlem Drain  |
| 15 | Jaarda Drain to South Branch                                | 43   | Pine Creek/Harlem Drain at Quincy St.                   |
| 16 | South Branch Macatawa River to Jaarda Drain                 | 44   | Pine Creek/Harlem Drain to Drain #37                    |
| 17 | South Branch Macatawa River to unnamed tributary near 146th | 45   | Drain #37 to Pine Creek/Harlem Drain                    |
| 18 | East Fillmore Drain (including Eskes Drain)                 | 46   | Pine Creek/Harlem Drain to Lake Macatawa                |
| 19 | South Branch Macatawa River to Macatawa River               | 47   | Macatawa River/Lake Macatawa                            |
| 20 | North Branch Macatawa River to Den Bleyker Drain            | 48   | Winstrom Creek and Drains #20A, 23, 53 to Lake Macatawa |
| 21 | Vanderbie Drain and Rotman Drain                            | 49   | Old Lela Drain to Lake Macatawa                         |
| 22 | North Branch Macatawa River to Den Bleyker Drain            | 50   | Weller Drain to Lake Macatawa                           |
| 23 | Den Bleyker Drain                                           | 51   | Arbor Creek to Lake Macatawa                            |
| 24 | North Branch Macatawa River at M-40                         | 52   | Ottogan Intercounty Drain to Lake Macatawa              |
| 25 | North Branch Macatawa River to Macatawa River               | 53   | Kelly Lake Drain to Lake Macatawa                       |
| 26 | Bosch and Hulst Drain at 104th Avenue                       | 54   | East Lake Macatawa drainage (does not include lake)     |
| 27 | Bosch and Hulst Drain to Noordeloos Creek                   | 55   | West Lake Macatawa drainage (does not include lake)     |
| 28 | Tributary to Bosch and Hulst Drain to Noordeloos Creek      | NC   | Non-contributing                                        |
| -  |                                                             |      |                                                         |

Figure 1 – Macatawa Watershed Subbasin Identification

## **Hydrologic Analysis Parameters**

### GIS Data

This study uses soil, 1978 land cover, and 2005 land cover GIS data as described in the Macatawa Watershed Hydrologic Study, <u>www.michigan.gov/documents/deq/lwm-nps-macatawa-hydro\_289356\_7.pdf</u>.

### **Runoff Curve Numbers**

Surface runoff volumes were modeled using the weighted Q runoff curve number technique. The runoff curve number technique, developed by the Natural Resources Conservation Service (NRCS) in 1954, represents the runoff characteristics from the combination of land use and soil data as a runoff curve number. The runoff curve numbers (CN) were calculated for each land cover and soil complex using GIS technology from the land use and soil data. In the weighted Q method, runoff from each land cover and soil complex is calculated and then summed for the area of interest.

#### Rainfall

The rainfall used in this study is based on 2002 – 2008 data from the Hudsonville weather station in the Michigan Automated Weather Network, Figure 2. The data for the West Olive station is shown as a consistency check. Hudsonville's annual average precipitation for the period is 30.18 inches.



Figure 2 – Annual Precipitation

#### Annual Runoff Calculations

Runoff by curve number per storm event was calculated for each year. The runoff for each curve number was summed for each of the seven years and then averaged. The results are shown in Table 1.

| Curve  | Runoff Volume | Curve  | Runoff Volume | Curve  | Runoff Volume |
|--------|---------------|--------|---------------|--------|---------------|
| Number | (inches)      | Number | (inches)      | Number | (inches)      |
| 100    | 30.18         | 75     | 2.85          | 50     | 0.33          |
| 99     | 25.07         | 74     | 2.63          | 49     | 0.30          |
| 98     | 21.78         | 73     | 2.42          | 48     | 0.27          |
| 97     | 19.24         | 72     | 2.24          | 47     | 0.24          |
| 96     | 17.18         | 71     | 2.06          | 46     | 0.21          |
| 95     | 15.45         | 70     | 1.90          | 45     | 0.18          |
| 94     | 13.97         | 69     | 1.75          | 44     | 0.16          |
| 93     | 12.68         | 68     | 1.62          | 43     | 0.14          |
| 92     | 11.56         | 67     | 1.49          | 42     | 0.12          |
| 91     | 10.55         | 66     | 1.37          | 41     | 0.10          |
| 90     | 9.66          | 65     | 1.26          | 40     | 0.08          |
| 89     | 8.86          | 64     | 1.16          | 39     | 0.07          |
| 88     | 8.14          | 63     | 1.07          | 38     | 0.05          |
| 87     | 7.49          | 62     | 0.98          | 37     | 0.04          |
| 86     | 6.89          | 61     | 0.91          | 36     | 0.03          |
| 85     | 6.35          | 60     | 0.83          | 35     | 0.02          |
| 84     | 5.85          | 59     | 0.76          | 34     | 0.02          |
| 83     | 5.40          | 58     | 0.70          | 33     | 0.01          |
| 82     | 4.98          | 57     | 0.64          | 32     | 0.00          |
| 81     | 4.60          | 56     | 0.59          | 31     | 0.00          |
| 80     | 4.25          | 55     | 0.54          | 30     | 0.00          |
| 79     | 3.92          | 54     | 0.49          |        |               |
| 78     | 3.62          | 53     | 0.45          |        |               |
| 77     | 3.34          | 52     | 0.41          |        |               |
| 76     | 3.08          | 51     | 0.37          |        |               |

Table 1

#### **Event Mean Concentrations**

Event Mean Concentrations are as defined in the Water Quality Trading Rules, <u>www.state.mi.us/orr/emi/admincode.asp?AdminCode=Single&Admin Num=32303001&</u> <u>Dpt=EQ&RngHigh</u> and shown in Table 2. For the Macatawa watershed, Total Suspended Solids (TSS), Total Phosphorous (TP), NO<sub>2</sub> plus NO<sub>3</sub>, and Total Kjeldahl Nitrogen (TKN) were calculated for each subbasin. Loads were calculated using the following equation, as described in the trading rules.

Load 
$$_{P} = \Sigma EMC_{L} \times R_{L} \times A_{L} \times K$$

where:

Load<sub>P</sub>= total average annual load, expressed in pounds.  $EMC_L$ = event mean concentration of stormwater runoff from a specific land use L (mg/l).  $R_L$  = total average annual storm water runoff from land use L (in/yr).  $A_L$  = area (acres) for land use L. K = 0.2266, a unit conversion constant, for all parameters.

| · · · · · · · · · · · · · · · · · · · | Table 2 – Water | Quality Trading | Rule Event Mean | Concentrations |
|---------------------------------------|-----------------|-----------------|-----------------|----------------|
|---------------------------------------|-----------------|-----------------|-----------------|----------------|

| Land use category (non-    | TSS    | BOD    | TP     | DP     | TKN    | NO2+3  | Pb     | Cu     | Zn     | Cd     |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| site specific)             | (mg/l) | (mg/l) | (mg/l) | (mg/l) | (mg/l) | (mg/l) | (ug/l) | (ug/l) | (ug/l) | (ug/l) |
| Forest/rural open          | 51     | 3      | 0.11   | 0.027  | 0.94   | 0.80   | 0.0    | 0.0    | 0.0    | 0.0    |
| Urban open                 | 51     | 3      | 0.11   | 0.03   | 0.94   | 0.80   | 14.2   | 0.0    | 40.2   | 0.8    |
| Agricultural               | 145    | 3      | 0.37   | 0.09   | 1.92   | 4.06   | 0.0    | 0.0    | 0.0    | 0.0    |
| Low density residential    | 70     | 38     | 0.52   | 0.27   | 3.32   | 1.83   | 56.9   | 26.2   | 161.1  | 3.9    |
| Medium density residential | 70     | 38     | 0.52   | 0.27   | 3.32   | 1.83   | 56.9   | 26.2   | 161.1  | 3.9    |
| High density residential   | 97     | 14     | 0.24   | 0.08   | 1.17   | 2.12   | 40.5   | 33.0   | 217.9  | 3.2    |
| Commercial                 | 77     | 21     | 0.33   | 0.17   | 1.74   | 1.23   | 49.3   | 37.0   | 156.3  | 2.7    |
| Industrial                 | 149    | 24     | 0.32   | 0.11   | 2.08   | 1.89   | 72.4   | 58.0   | 670.8  | 4.8    |
| Highways                   | 141    | 24     | 0.43   | 0.22   | 1.82   | 0.83   | 49.3   | 37.0   | 156.3  | 2.7    |
| Water/wetlands             | 6      | 4      | 0.08   | 0.04   | 0.79   | 0.59   | 11.1   | 6.5    | 30.3   | 0.6    |

## Results

#### Annual Runoff Volume

Although the calculated annual runoff results are not the primary purpose of this study, the results are detailed separately because they are used to calculate the pollutant loadings and because the trends may be of interest to watershed stakeholders.

Both the 1978 and 2005 use the same rainfalls. Only the land use is varied. The modeled changes are therefore caused by land use changes. Runoff volumes for pervious and impervious surfaces were calculated separately as detailed in the Macatawa Watershed Hydrologic Study, <u>www.michigan.gov/documents/deq/lwm-nps-macatawa-hydro\_289356\_7.pdf</u>.

Average annual runoff volumes for each subbasin are shown in Table 4. Table 3 details the total volume to key points in the watershed. The model calculated a total of 48,600 acre-feet of runoff from the watershed with the 1978 land use scenario. Using 2005 land use, it calculated 57,800 acre-feet, an increase of 9,200 acre-feet or 19 percent.

| Description                   | Sconario | Volume      |                |          |  |  |  |
|-------------------------------|----------|-------------|----------------|----------|--|--|--|
| Description                   | Scenario | (acre-feet) | (gallons)      | Increase |  |  |  |
| Macatawa Divor                | 1978     | 34,400      | 11,210,000,000 | 100/     |  |  |  |
|                               | 2005     | 40,900      | 13,330,000,000 | 1970     |  |  |  |
| Other Tributaries to Lake     | 1978     | 7,600       | 2,460,000,000  | 210/     |  |  |  |
| Macatawa                      | 2005     | 9,900       | 3,230,000,000  | J1/0     |  |  |  |
| Direct Drainage to Lake       | 1978     | 2,100       | 680,000,000    | 160/     |  |  |  |
| Macatawa                      | 2005     | 2,400       | 790,000,000    | 1070     |  |  |  |
| Total to Lake Magatawa        | 1978     | 44,100      | 14,360,000,000 | 210/     |  |  |  |
| TOTAL TO LAKE MACATAWA        | 2005     | 53,200      | 17,340,000,000 | Z I 70   |  |  |  |
| Lake Macatawa                 | Both     | 4,500       | 1,480,000,000  | NA       |  |  |  |
| Total including Lake Macatawa | 1978     | 48,600      | 15,830,000,000 | 10%      |  |  |  |
|                               | 2005     | 57,800      | 18,820,000,000 | 19%      |  |  |  |

Table 3 – Annual Runoff Volume Summary

## Table 4 – Annual Runoff Volume by Subbasin

| 10 |                                                             | Volume (ad   | cre-inches) | Vo    | lume (in | ches)       |
|----|-------------------------------------------------------------|--------------|-------------|-------|----------|-------------|
| U  | Subbasin                                                    | 1978         | 2005        | 1978  | 2005     | Change      |
| 1  | Beaver Dam Drain to Macatawa River                          | 11.100       | 11.800      | 4.44  | 4.73     | 6%          |
| 2  | Macatawa River to Beaver Dam Drain                          | 11.000       | 10,400      | 5.36  | 5.08     | -5%         |
| 3  | Macatawa River at 72nd Avenue                               | 7.450        | 7.390       | 4.35  | 4.31     | -1%         |
| 4  | Macatawa River at I-196 Overpass                            | 15,600       | 17,000      | 5.39  | 5.85     | 9%          |
| 5  | Macatawa River to Hunderman Creek                           | 14,200       | 15,100      | 5.25  | 5.61     | 7%          |
| 6  | Big Creek to Hunderman Creek                                | 13 400       | 14 100      | 5.55  | 5.85     | 5%          |
| 7  | Hunderman Creek to Big Creek                                | 11,000       | 11,100      | 4 77  | 4 86     | 2%          |
| 8  | Hunderman Creek to Macatawa River                           | 774          | 1 030       | 3.03  | 4 04     | 33%         |
| g  | Macatawa River to South Branch                              | 9 080        | 10,600      | 5 29  | 6 19     | 17%         |
| 10 | Lippamed tributary to Peters Drain                          | 11,000       | 11 100      | 4 71  | 4 70     | 2%          |
| 11 | Peters Drain                                                | 15 300       | 15,500      | 4.71  | 4.73     | 2 /0        |
| 12 | Linnamed tributary to Peters Creek                          | 12,000       | 13,000      | 5.17  | 5 10     | 0%          |
| 12 | Deters Creek to Magetawa Biver                              | 12,900       | 2 200       | 2.17  | 0.19     | 1 4 9/      |
| 14 | Kleinbekeel Drain to South Branch                           | 2,020        | 2,290       | 2.39  | 2.71     | 14 70       |
| 14 | Learde Drain to South Branch                                | 10,000       | 10,000      | 5.52  | 5.50     | 1 70        |
| 10 | Jaarda Drain to South Branch                                | 12,200       | 12,400      | 5.07  | 5.14     | 1%          |
| 10 | South Branch Macatawa River to Jaarda Drain                 | 7,550        | 7,830       | 4.57  | 4.74     | 4%          |
| 17 | South Branch Macatawa River to unnamed tributary near 146th | 6,120        | 6,920       | 4.25  | 4.80     | 13%         |
| 18 | East Fillmore Drain (including Eskes Drain)                 | 12,400       | 12,600      | 4.78  | 4.85     | 1%          |
| 19 | South Branch Macatawa River to Macatawa River               | 18,900       | 19,700      | 4.72  | 4.90     | 4%          |
| 20 | North Branch Macatawa River to Den Bleyker Drain            | 19,900       | 21,000      | 4.88  | 5.15     | 6%          |
| 21 | Vanderbie Drain and Rotman Drain                            | 4,660        | 5,180       | 5.49  | 6.11     | 11%         |
| 22 | North Branch Macatawa River to Den Bleyker Drain            | 8,070        | 11,600      | 6.25  | 8.98     | 44%         |
| 23 | Den Bleyker Drain                                           | 8,110        | 12,100      | 5.73  | 8.54     | 49%         |
| 24 | North Branch Macatawa River at M-40                         | 8,640        | 12,000      | 6.57  | 9.12     | 39%         |
| 25 | North Branch Macatawa River to Macatawa River               | 15,700       | 20,100      | 5.15  | 6.60     | 28%         |
| 26 | Bosch and Hulst Drain at 104th Avenue                       | 4,510        | 5,810       | 2.28  | 2.94     | 29%         |
| 27 | Bosch and Hulst Drain to Noordeloos Creek                   | 12,800       | 12,900      | 4.71  | 4.71     | 0%          |
| 28 | Tributary to Bosch and Hulst Drain to Noordeloos Creek      | 6,750        | 7,200       | 3.85  | 4.10     | 7%          |
| 29 | Hunters Creek to Brower Drain                               | 9,630        | 11,500      | 3.90  | 4.67     | 20%         |
| 30 | Brower Drain to Hunters Creek                               | 14,700       | 24,200      | 5.89  | 9.67     | 64%         |
| 31 | Noordeloos Creek to Drain #52                               | 9,760        | 12,000      | 4.38  | 5.37     | 22%         |
| 32 | Cedar Drain to Noordeloos Creek                             | 5,800        | 8,130       | 6.23  | 8.73     | 40%         |
| 33 | Drain #4 and 43 to Noordeloos Creek                         | 5,630        | 7,560       | 5.97  | 8.02     | 34%         |
| 34 | Noordeloos Creek to Macatawa River                          | 7,310        | 10,200      | 4.95  | 6.90     | 40%         |
| 35 | Macatawa River to North Branch                              | 4,630        | 5,610       | 6.32  | 7.66     | 21%         |
| 36 | Macatawa River to Noordeloos Creek                          | 3,170        | 3,940       | 4.96  | 6.16     | 24%         |
| 37 | North Holland Creek to Drain #40                            | 9,250        | 16,200      | 3.73  | 6.54     | 75%         |
| 38 | Drain #15 and 17 to Drain #40                               | 10,500       | 16,400      | 4.54  | 7.12     | 57%         |
| 39 | Drain #40 to Macatawa River                                 | 6,380        | 13,100      | 4.54  | 9.35     | 106%        |
| 40 | Macatawa River to Windmill Island                           | 14,900       | 20,200      | 8.15  | 11.08    | 36%         |
| 41 | Maplewood Intercounty Drain to Macatawa River               | 14,400       | 18,000      | 8.99  | 11.21    | 25%         |
| 42 | Troost and Boven Dam Drains to Pine Creek/Harlem Drain      | 6,600        | 7,290       | 3.52  | 3.88     | 10%         |
| 43 | Pine Creek/Harlem Drain at Quincy St.                       | 4,180        | 8,620       | 1.65  | 3.40     | 106%        |
| 44 | Pine Creek/Harlem Drain to Drain #37                        | 11,900       | 20,100      | 3.40  | 5.71     | 68%         |
| 45 | Drain #37 to Pine Creek/Harlem Drain                        | 3.200        | 4,440       | 2.12  | 2.94     | 39%         |
| 46 | Pine Creek/Harlem Drain to Lake Macatawa                    | 8.420        | 12,200      | 4.95  | 7.20     | 45%         |
| 47 | Macatawa River/Lake Macatawa                                | 25,300       | 27.200      | 11.08 | 11.92    | 8%          |
| 48 | Winstrom Creek and Drains #20A, 23, 53 to Lake Macatawa     | 9,070        | 13,300      | 2.86  | 4.20     | 47%         |
| 49 | Old Lela Drain to Lake Macatawa                             | 2 770        | 3 680       | 6.20  | 8 25     | 33%         |
| 50 | Weller Drain to Lake Macatawa                               | 2 890        | 3 040       | 5 47  | 5.76     | 5%          |
| 51 | Arbor Creek to Lake Macatawa                                | 2 190        | 2,390       | 4 80  | 5.22     | 9%          |
| 52 | Ottogan Intercounty Drain to Lake Macatawa                  | 3 990        | 4 400       | 3.51  | 3.87     | 10%         |
| 52 | Kelly Lake Drain to Lake Macatawa                           | 10 200       | 12 000      | 2 50  | 3.07     | 18%         |
| 5/ | Fast Lake Macatawa drainage (does not include lake)         | 17 100       | 18 800      | 8.66  | 9.57     | 10%         |
| 55 | West Lake Macatawa drainage (does not include lake)         | 7 060        | 10,000      | 3 99  | 4 00     | 200/        |
| 00 | Average                                                     | 1,900        | 11 610      | 1.00  | 4.99     | 2370        |
|    | Minimum                                                     | 9,014<br>774 | 1 020       | 4.90  | 0.00     | 2470<br>E0/ |
|    | Movimum                                                     | 25 200       | 1,030       | 11.00 | 2./1     | -3%         |
| 1  | WIAAHHUIH                                                   | ∠0,300       | Z1,200      | 00.11 | 11.92    | 100%        |

#### Annual Pollutant Loadings

The calculated Total Suspended Solids (TSS), Total Phosphorous (TP), NO<sub>2</sub> plus NO<sub>3</sub>, and Total Kjeldahl Nitrogen (TKN) results for each subbasin are detailed in Table 5. The loadings per acre for each subbasin are shown in Figures 3 through 6.

The estimated loadings are based on typical practices for the land covers. It does not include local anomalies, such as gully erosion, or in-stream processes, such as channel erosion. The modeled load estimates do not replace in-stream monitoring data. A full review of the available monitoring data is beyond the scope of this study. However, Figure 7 depicts the loads estimated by this model compared to points that are approximately equivalent that have been measured by MDEQ's Surface Water Assessment Section staff.

|          |          | 227      | TP       |          | TKN      | TSS       | Р         | $NO_2 + NO_3$ | TKN       |
|----------|----------|----------|----------|----------|----------|-----------|-----------|---------------|-----------|
| Subbasin | Scenario | (pounds) | (pounds) | (pounds) | (pounds) | (pounds   | (pounds   | (pounds       | (pounds   |
|          |          | (1       | (1       | (1       | (1       | per acre) | per acre) | per acre)     | per acre) |
| 1        | 1978     | 343,000  | 889      | 9,490    | 4,690    | 138       | 0.357     | 3.81          | 1.88      |
|          | 2005     | 325,000  | 991      | 8,840    | 5,500    | 130       | 0.397     | 3.55          | 2.21      |
| 2        | 1978     | 334,000  | 926      | 6,310    | 4,510    | 163       | 0.452     | 3.08          | 2.21      |
| 3        | 2005     | 287,000  | 870      | 5,380    | 4,440    | 140       | 0.425     | 2.63          | 2.17      |
| 3        | 1978     | 228,000  | 615      | 5,290    | 3,120    | 133       | 0.359     | 3.09          | 1.82      |
|          | 2005     | 201,000  | 635      | 4,640    | 3,440    | 117       | 0.371     | 2.71          | 2.01      |
| 4        | 1978     | 483,000  | 1,340    | 10,900   | 6,740    | 166       | 0.462     | 3.76          | 2.32      |
|          | 2005     | 478,000  | 1,460    | 10,600   | 8,040    | 165       | 0.505     | 3.64          | 2.77      |
| 5        | 1978     | 450,000  | 1,190    | 11,200   | 6,040    | 167       | 0.439     | 4.17          | 2.24      |
|          | 2005     | 435,000  | 1,240    | 10,400   | 6,630    | 161       | 0.461     | 3.86          | 2.46      |
| 6        | 1978     | 429,000  | 1,120    | 12,000   | 5,870    | 178       | 0.466     | 4.97          | 2.44      |
|          | 2005     | 416,000  | 1,230    | 11,200   | 6,750    | 173       | 0.511     | 4.64          | 2.80      |
| 7        | 1978     | 347,000  | 887      | 9,650    | 4,650    | 151       | 0.386     | 4.20          | 2.03      |
|          | 2005     | 315,000  | 828      | 8,450    | 4,530    | 137       | 0.360     | 3.68          | 1.97      |
| 8        | 1978     | 23,500   | 64       | 642      | 341      | 92        | 0.252     | 2.51          | 1.33      |
|          | 2005     | 25,400   | 92       | 607      | 545      | 99        | 0.358     | 2.38          | 2.13      |
| 9        | 1978     | 247,000  | 757      | 4,970    | 4,040    | 144       | 0.441     | 2.90          | 2.35      |
|          | 2005     | 204,000  | 841      | 4,090    | 5,010    | 118       | 0.489     | 2.38          | 2.92      |
| 10       | 1978     | 350,000  | 898      | 9,750    | 4,700    | 151       | 0.386     | 4.19          | 2.02      |
| 9<br>10  | 2005     | 351,000  | 918      | 9,770    | 4,840    | 151       | 0.395     | 4.20          | 2.08      |
| 11       | 1978     | 478,000  | 1,250    | 13,200   | 6,630    | 139       | 0.366     | 3.86          | 1.93      |
| 11       | 2005     | 474,000  | 1,270    | 13,100   | 6,780    | 138       | 0.370     | 3.81          | 1.98      |
| 10       | 1978     | 412,000  | 1,060    | 11,500   | 5,540    | 165       | 0.423     | 4.59          | 2.21      |
| 12       | 2005     | 410,000  | 1,070    | 11,400   | 5,640    | 164       | 0.428     | 4.57          | 2.25      |
| 40       | 1978     | 49,000   | 148      | 1,260    | 865      | 58        | 0.175     | 1.49          | 1.02      |
| 13       | 2005     | 45,100   | 181      | 1,200    | 1,110    | 53        | 0.214     | 1.42          | 1.31      |
| 4.4      | 1978     | 512,000  | 1,310    | 14,300   | 6,860    | 178       | 0.458     | 4.98          | 2.39      |
| 14       | 2005     | 514,000  | 1,330    | 14,200   | 7,010    | 179       | 0.465     | 4.96          | 2.44      |
| 45       | 1978     | 392,000  | 1,020    | 10,900   | 5,320    | 162       | 0.421     | 4.52          | 2.21      |
| 15       | 2005     | 387,000  | 1,040    | 10,700   | 5,530    | 160       | 0.432     | 4.45          | 2.29      |

#### Table 5 – Annual Pollutant Loads by Subbasin

|                            |          | 227       | тр       |                | TKN       | TSS       | Р         | NO <sub>2</sub> +NO <sub>3</sub> | TKN       |
|----------------------------|----------|-----------|----------|----------------|-----------|-----------|-----------|----------------------------------|-----------|
| Subbasin                   | Scenario | (nounds)  | (nounds) | (nounds)       | (nounds)  | (pounds   | (pounds   | (pounds                          | (pounds   |
|                            |          | (pourido) |          | (pourido)      | (pourido) | per acre) | per acre) | per acre)                        | per acre) |
| 16                         | 1978     | 213,000   | 562      | 5,950          | 3,040     | 129       | 0.340     | 3.60                             | 1.84      |
|                            | 2005     | 206,000   | 590      | 5,700          | 3,290     | 125       | 0.357     | 3.45                             | 1.99      |
| 17                         | 1978     | 164,000   | 442      | 4,280          | 2,490     | 113       | 0.307     | 2.97                             | 1.73      |
|                            | 2005     | 171,000   | 509      | 4,190          | 2,960     | 119       | 0.353     | 2.91                             | 2.06      |
| 18                         | 1978     | 379,000   | 998      | 10,500         | 5,310     | 146       | 0.383     | 4.03                             | 2.04      |
|                            | 2005     | 383,000   | 1,040    | 10,600         | 5,560     | 147       | 0.398     | 4.05                             | 2.14      |
| 19                         | 1978     | 549,000   | 1,470    | 14,700         | 7,900     | 137       | 0.366     | 3.67                             | 1.97      |
|                            | 2005     | 523,000   | 1,600    | 13,900         | 8,920     | 130       | 0.398     | 3.46                             | 2.22      |
| 20                         | 1978     | 583,000   | 1,590    | 14,100         | 8,260     | 143       | 0.391     | 3.46                             | 2.03      |
| 20                         | 2005     | 558,000   | 1,680    | 13,000         | 9,090     | 137       | 0.413     | 3.20                             | 2.23      |
| 21                         | 1978     | 137,000   | 389      | 3,270          | 2,060     | 161       | 0.459     | 3.86                             | 2.43      |
|                            | 2005     | 147,000   | 433      | 3,160          | 2,400     | 173       | 0.511     | 3.73                             | 2.83      |
| 22                         | 1978     | 253,000   | 702      | 5,510          | 3,500     | 196       | 0.544     | 4.27                             | 2.71      |
|                            | 2005     | 340,000   | 933      | 5,280          | 5,140     | 263       | 0.723     | 4.09                             | 3.98      |
| 23                         | 1978     | 232,000   | 649      | 5,150          | 3,350     | 164       | 0.459     | 3.64                             | 2.37      |
| 20                         | 2005     | 330,000   | 973      | 4,420          | 4,950     | 233       | 0.688     | 3.13                             | 3.49      |
| 24                         | 1978     | 237,000   | 659      | 5,060          | 3,450     | 180       | 0.502     | 3.85                             | 2.63      |
| 24                         | 2005     | 345,000   | 885      | 5,280          | 5,070     | 262       | 0.673     | 4.02                             | 3.86      |
| 25                         | 1978     | 467,000   | 1,290    | 11,800         | 6,780     | 153       | 0.424     | 3.85                             | 2.23      |
|                            | 2005     | 517,000   | 1,630    | 10,900         | 9,140     | 170       | 0.535     | 3.57                             | 3.00      |
| 26                         | 1978     | 125,000   | 320      | 3,340          | 1,760     | 63        | 0.162     | 1.69                             | 0.89      |
|                            | 2005     | 128,000   | 429      | 3,410          | 2,560     | 65        | 0.217     | 1.72                             | 1.29      |
| 27                         | 1978     | 413,000   | 1,060    | 11,500         | 5,530     | 151       | 0.388     | 4.22                             | 2.03      |
|                            | 2005     | 399,000   | 1,070    | 11,100         | 5,680     | 146       | 0.392     | 4.06                             | 2.08      |
|                            | 1978     | 219,000   | 561      | 6,130          | 2,920     | 125       | 0.320     | 3.50                             | 1.67      |
| 28                         | 2005     | 216,000   | 577      | 6,020          | 3,080     | 123       | 0.329     | 3.43                             | 1.76      |
|                            | 1978     | 305,000   | 815      | 8,450          | 4,320     | 123       | 0.330     | 3.42                             | 1.75      |
| 29                         | 2005     | 305,000   | 1,050    | 8,150          | 5,960     | 123       | 0.426     | 3.30                             | 2.41      |
|                            | 1978     | 434,000   | 1,210    | 9,140          | 6,860     | 174       | 0.483     | 3.66                             | 2.75      |
| 30                         | 2005     | 639,000   | 1,930    | 10,400         | 11,600    | 256       | 0.772     | 4.18                             | 4.65      |
| 0.4                        | 1978     | 297,000   | 809      | 8,200          | 4,330     | 133       | 0.363     | 3.68                             | 1.94      |
| 31                         | 2005     | 264.000   | 1.010    | 7,110          | 5.980     | 119       | 0.455     | 3.19                             | 2.68      |
|                            | 1978     | 118.000   | 522      | 2.280          | 3.050     | 127       | 0.560     | 2.44                             | 3.28      |
| 32                         | 2005     | 146.000   | 708      | 2.780          | 4.290     | 157       | 0.760     | 2.98                             | 4.60      |
|                            | 1978     | 166.000   | 475      | 3.630          | 2,430     | 176       | 0.504     | 3.85                             | 2.58      |
| 33                         | 2005     | 165,000   | 620      | 2,790          | 3,710     | 175       | 0.658     | 2.96                             | 3.93      |
| 30<br>31<br>32<br>33<br>34 | 1978     | 159,000   | 623      | 3,560          | 3,780     | 108       | 0.422     | 2.41                             | 2.56      |
| 34                         | 2005     | 184 000   | 848      | 3 630          | 5 200     | 124       | 0.574     | 2 46                             | 3 52      |
|                            | 1978     | 139,000   | 380      | 2 930          | 1 900     | 189       | 0.519     | 4 00                             | 2.59      |
| 35                         | 2005     | 154 000   | 437      | 2,610          | 2 340     | 210       | 0.597     | 3.57                             | 3 19      |
|                            | 1978     | 67 500    | 279      | 1 760          | 1 700     | 106       | 0.007     | 2 75                             | 2.65      |
| 36                         | 2005     | 62 700    | 353      | 1 410          | 2 250     | 100<br>QR | 0.552     | 2.70                             | 3 51      |
|                            | 1978     | 260.000   | 743      | 6 250          | 3,200     | 105       | 0.300     | 2.21                             | 1 61      |
| 37                         | 2005     | 427 000   | 1 220    | 8 100          | 7 220     | 172       | 0.000     | 2.02                             | 2 92      |
| <u> </u>                   | 1978     | 306.000   | 857      | 7 580          | 4 530     | 133       | 0.435     | 3.28                             | 1 96      |
| 38                         | 2005     | 433 000   | 1 270    | 1,500<br>8,660 | 7 150     | 188       | 0.571     | 3.20                             | 3 10      |
|                            | 1079     | 155 000   | 522      | 3 250          | 2 050     | 110       | 0.0-0     | 2 21                             | 2 10      |
| 39                         | 2005     | 252.000   | 1 000    | 3,200          | 2,900     | 170       | 0.371     | 2.31                             | 2.10      |
| I                          | 2005     | 252,000   | 1,000    | 4,470          | 5,560     | 179       | 0.713     | 3.10                             | 3.97      |

| Subbasin | Scenario | TSS     | TP    | NO <sub>2</sub> +NO <sub>3</sub> | TKN      | TSS<br>(pounds | P<br>(pounds | NO <sub>2</sub> +NO <sub>3</sub><br>(pounds | TKN<br>(pounds |           |           |
|----------|----------|---------|-------|----------------------------------|----------|----------------|--------------|---------------------------------------------|----------------|-----------|-----------|
|          |          |         |       | (pounds)                         | (pounds) | (pounds)       | (pounds)     | per acre)                                   | per acre)      | per acre) | per acre) |
| 40       | 1978     | 323,000 | 1,140 | 5,820                            | 6,410    | 177            | 0.623        | 3.19                                        | 3.51           |           |           |
|          | 2005     | 409,000 | 1,530 | 6,170                            | 8,820    | 224            | 0.839        | 3.38                                        | 4.83           |           |           |
| 41       | 1978     | 353,000 | 1,110 | 5,720                            | 6,600    | 220            | 0.695        | 3.57                                        | 4.12           |           |           |
|          | 2005     | 457,000 | 1,380 | 6,620                            | 8,340    | 285            | 0.860        | 4.13                                        | 5.20           |           |           |
| 42       | 1978     | 184,000 | 497   | 4,480                            | 2,690    | 98             | 0.265        | 2.39                                        | 1.43           |           |           |
| 42       | 2005     | 198,000 | 561   | 4,670                            | 3,090    | 106            | 0.299        | 2.49                                        | 1.64           |           |           |
| 43       | 1978     | 101,000 | 297   | 2,460                            | 1,760    | 40             | 0.117        | 0.97                                        | 0.69           |           |           |
|          | 2005     | 183,000 | 550   | 3,790                            | 3,470    | 72             | 0.217        | 1.49                                        | 1.37           |           |           |
| 44       | 1978     | 216,000 | 1,030 | 5,150                            | 6,310    | 61             | 0.293        | 1.46                                        | 1.80           |           |           |
|          | 2005     | 340,000 | 1,750 | 7,300                            | 10,600   | 97             | 0.498        | 2.08                                        | 3.02           |           |           |
| 45       | 1978     | 63,000  | 197   | 1,530                            | 1,220    | 42             | 0.130        | 1.02                                        | 0.81           |           |           |
|          | 2005     | 70,800  | 284   | 1,870                            | 1,820    | 47             | 0.189        | 1.24                                        | 1.20           |           |           |
| 46       | 1978     | 162,000 | 702   | 3,240                            | 4,360    | 96             | 0.413        | 1.90                                        | 2.57           |           |           |
|          | 2005     | 198,000 | 1,040 | 4,070                            | 6,410    | 117            | 0.611        | 2.39                                        | 3.77           |           |           |
| 47       | 1978     | 442,000 | 1,790 | 8,210                            | 11,100   | 194            | 0.785        | 3.60                                        | 4.87           |           |           |
|          | 2005     | 471,000 | 1,940 | 8,400                            | 12,000   | 206            | 0.850        | 3.68                                        | 5.26           |           |           |
| 48       | 1978     | 163,000 | 654   | 2,780                            | 3,930    | 51             | 0.206        | 0.88                                        | 1.24           |           |           |
|          | 2005     | 216,000 | 1,070 | 4,200                            | 6,590    | 68             | 0.337        | 1.33                                        | 2.08           |           |           |
| 48<br>49 | 1978     | 57,000  | 242   | 1,340                            | 1,400    | 128            | 0.542        | 3.02                                        | 3.14           |           |           |
|          | 2005     | 63,400  | 323   | 1,300                            | 1,900    | 142            | 0.724        | 2.91                                        | 4.26           |           |           |
| 50       | 1978     | 73,300  | 272   | 1,940                            | 1,590    | 139            | 0.516        | 3.68                                        | 3.01           |           |           |
| 50       | 2005     | 60,700  | 299   | 1,540                            | 1,830    | 115            | 0.566        | 2.92                                        | 3.47           |           |           |
| 51       | 1978     | 57,200  | 191   | 1,520                            | 1,080    | 125            | 0.418        | 3.31                                        | 2.35           |           |           |
| 51       | 2005     | 54,200  | 222   | 1,390                            | 1,320    | 119            | 0.486        | 3.04                                        | 2.87           |           |           |
| 50       | 1978     | 92,600  | 338   | 2,430                            | 1,990    | 82             | 0.298        | 2.14                                        | 1.75           |           |           |
| 52       | 2005     | 77,800  | 388   | 1,980                            | 2,430    | 68             | 0.342        | 1.75                                        | 2.14           |           |           |
| 50       | 1978     | 200,000 | 712   | 5,210                            | 4,360    | 51             | 0.181        | 1.33                                        | 1.11           |           |           |
| 55       | 2005     | 195,000 | 927   | 5,010                            | 5,930    | 50             | 0.236        | 1.28                                        | 1.51           |           |           |
| 54       | 1978     | 333,000 | 1,550 | 6,540                            | 9,460    | 169            | 0.788        | 3.32                                        | 4.81           |           |           |
| 54       | 2005     | 363,000 | 1,710 | 6,910                            | 10,400   | 185            | 0.870        | 3.51                                        | 5.30           |           |           |
| 55       | 1978     | 121,000 | 787   | 2,980                            | 5,060    | 59             | 0.383        | 1.45                                        | 2.46           |           |           |
| 55       | 2005     | 159,000 | 1,040 | 3,830                            | 6,580    | 77             | 0.505        | 1.87                                        | 3.20           |           |           |



Figure 3 – Total Suspended Solids (TSS) Loading per Acre, 1978



Figure 4 – Total Suspended Solids (TSS) Loading per Acre, 2005



Figure 5 – Total Phosphorous (TP) Loading per Acre, 1978



Figure 6 – Total Phosphorous (TP) Loading per Acre, 205



Figure 7 – NO<sub>2</sub> plus NO<sub>3</sub> Loading per Acre, 1978



Figure 8 – NO<sub>2</sub> plus NO<sub>3</sub> Loading per Acre, 2005











Figure 11 – Modeled Total Phosphorous Estimates Compared to Selected Monitoring Locations